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Abstract. Suppose that a pair of entities which have been generated jointly from a common source are
separated by an experimental device so that they cannot interact any more. Then, strictly formulating
within the framework of traditional quantum mechanics, the ensemble of all pairs may be represented by
either a separable or a non-separable statistical operator. The former stands for the independence of the
sub-ensembles whereas the latter admits correlations (EPR correlations) due to the presence of interference
or cross terms. The second-order correlation function ∆, which is also amenable by experiment, adopts
different values depending on the choice of the statistical operator. So, by performing an experiment of
this kind with molecules, the question could be decided whether EPR correlations appear in the molecular
domain too. A detailed elaboration of the following idea is presented: let an achiral precursor molecule M2

dissociate so that two chiral fragments of different handedness are obtained. After separation R–M (L–M)
interacts in a region of space A (B) with a photon I (II) in an already known linear polarization state. The
enantiomeric correlation between the fragments is thereby conferred to the photons, and the corresponding
changes of the polarization state are detected for different polarizer settings to finally yield ∆.

PACS. 03.65.Ta Foundations of quantum mechanics; measurement theory – 33.15.Bh General molecular
conformation and symmetry; stereochemistry – 33.80.-b Photon interactions with molecules

1 Introduction

Since the publication of the study of Einstein, Podolsky,
and Rosen (≡EPR) [1] on the assumed incompleteness
of traditional or pioneer quantum mechanics (≡TQM)
in 1935 the discussion of the EPR gedankenexperiment
did not come to a conclusive result. Two apparently self-
evident axioms have been added by EPR to the pure
formalism, and a paradox resulted. Up to now the dis-
cussion of the consequences has been burdened with an
additional problem which emerged from a wide-spread
misunderstanding of the first of the axioms, EPR’s famous
principle of reality. At least in their 1935 paper EPR’s
point of view on the notion of reality was a purely opera-
tionalistic one where reality appeared as a consequence of
predictability. On the other hand, however, many physi-
cists have equated reality with existence in some onto-
logical sense (and still do so) so that the debate on the
validity of the principle of reality in TQM got a touch
of a question of faith. Depending on the philosophical at-
titude of the respective physicist numerous attempts to
solve the paradox have been made. The first of all dates
back to Bohr [2] who refuted the entire EPR argument by
pointing out that even this very weak principle of reality
is not compatible with his own (and therefore obviously
unimpeachable) interpretation of TQM.
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The second axiom, the principle of separability, is as
follows: “If a physical system remains, for a certain time,
... isolated from other systems, then the evolution of its
properties during this whole time interval cannot be in-
fluenced by operations carried out on other systems” [3].
This axiom can be sacrificed even less light-heartedly be-
cause separability is one of the fundamental paradigms
of modern science. Only by isolating an entity from the
fabric of its interaction with other entities an object of in-
vestigation can be created. Separability is the prerequisite
of any possibility to perform such an isolation.

It is, however, open to question whether indeed both
axioms are necessary to generate a paradox. Without
adding any further concepts to TQM, the formalism it-
self allows for two mutually exclusive possibilities to view
the micro-world [4]. Imagine that we separate experimen-
tally a pair of entities which have been generated jointly
from a common source, i.e., from a common ancestor.
Then, as will be explained later, the ensemble {Ui, Vi}
of all separated and thereby non-interacting entities Ui
and Vi may be represented by either a separable (ρs) or
a non-separable (ρn−s) statistical operator depending on
the assumed relation between the U -sub-ensemble {Ui}
and the V -sub-ensemble {Vi}. ρs allows for independent
sub-ensembles whereas ρn−s admits correlations due to the
presence of interference or cross terms. Analyzing a set of
suited experiments it can be shown that the second-order
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correlation function ∆ [5–9] adopts different values de-
pending on which ρ has been chosen. Since ∆ is amenable
by experiment, a final decision can be made regarding to
which statistical operator does predict the experimental
result correctly.

Employing ensembles of photon pairs a number
of outstanding experiments have been performed (see
Refs. [10–12], not to mention the numerous refinements
and extensions published since then). Some of these have
been severely criticized because of a not well-justified data
adjustment technique [13]. However, the recent work of
Zeilinger et al. [14] has been done without this adjust-
ment, and it confirms without any doubt that these en-
sembles may only be represented by a non-separable sta-
tistical operator. So, at least in the realm of photons and
on the level of pure description of phenomena nature be-
haves non-separable.

The molecules chemists use to explain experimental
findings are essentially classical objects due to their inter-
nal spatial structure of a certain temporal stability [15].
Nevertheless said objects are micro-entities too (if we leave
out of account the case of macro-molecules), and therefore
TQM is obviously necessary to make statements about
the results of experiments with molecules. But since non-
separability is an essential feature of TQM and in fact
shows up in photon pairs, the question arises whether also
the molecules chemists think of may be correlated in this
way. In another paper [16], I have investigated the disso-
ciation reaction A2 → 2A, where one internal structural
degree of freedom gets lost in favor of two (coupled) trans-
lations. In analogy to the formulation of the EPR paradox
in the case of two spin-1/2 particles given by d’Espagnat
[3] it could be shown that we have the alternative to ac-
cept either that the two fragments A(1) and A(2) are still
correlated even if they do not interact any more or to
accept the violation of the principle of total energy con-
servation (≡TEC principle). Put it into plain words: we
can either sacrifice the principle of separability (in this
case we would be obliged automatically to abandon any
attempt of a simple realistic approach to molecules) or
admit that (in ultimate conclusion) energy can be created
and annihilated arbitrarily. So we are compelled to ac-
cept that non-separability even plays a role in the world
of our quite classical molecules. This, however, should be
detectable by experiment.

2 Non-separability vs. separability

2.1 Basic considerations

Let us perform a gedankenexperiment which dates back
to Wheeler [17]: suppose that a coin is sawed up so that
one half contains the head of the original coin and the
other one the tail. Now each half is put into an envelope.
Envelope 1 is sent to an observer named Alice whilst en-
velope 2 is sent to an other observer named Bob. If Alice
opens her envelope she will not only realize which half of
the coin she has obtained, but she will also know with
certainty what Bob will discover if he opens his envelope.

Obviously these two processes are correlated. If Alice ob-
serves “head” Bob will observe “tail” and vice versa. Since
Alice and Bob cannot be in possession of the same side of
the original coin (unless magic is involved), a combination
as (AH, BH) will never be found.

Of course this result can also be obtained formally by
means of TQM. The ensemble of all coins cut into halves
is represented by a statistical operator ρc, i.e., by a self-
adjoint operator with positive spectrum and Trρc = 1. ρc

acts on the 2×2-dimensional Hilbert space H = HA⊗HB.
Let {|αi〉|βj〉} be a basis of H. With P as an operator
suited to describe the activities of Alice and Bob the final
result of a whole series of single runs is given by

O(A,B) = Tr(Pρc). (1)

Let +1 (−1) be the result if “head” (“tail”) is observed.
Then obviously O(A,B) must be equal to −1. Thereby,
and assuming that in a large number of single runs both
Alice and Bob will obtain equal shares of “heads” and
“tails”, ρc is determined uniquely by

ρc = 1/2(Uhh ⊗ Vtt + Utt ⊗ Vhh) (2)

with Uhh = |αhead〉〈αhead| and the other operators defined
analogously.

Definition 1. A statistical operator ρ on H = HA⊗HB,
HA ⊥ HB, is called separable iff it can be decomposed
into a direct product of two statistical operators ρA
and ρB where ρA is confined to HA and ρB to HB.
Otherwise it is called non-separable.

(This definition is a special case of the usual one. For
a comparison of the two approaches see Ref. [4].)

It is easy to see that ρc, which takes care of the cor-
rect outcome O(A,B) = −1, is non-separable. What does
this mean? It does simply mean that the halves are not
independent of one another. A half can only be defined
with respect to the whole. “Head” makes sense only with
respect to a complete coin. So there is no existence of
one half independent of the other. Of course they may be
sent to the opposite ends of the earth, but nevertheless
they remain belonging together. (Note that this experi-
ment serves as an illustration to introduce the notions of
separability and non-separability of statistical operators.
There is no deeper sense to it.)

2.2 A generalized EPR-type gedankenexperiment

A given quantum entity shall decay at a time t0 into two
parts called Ui and Vi, resp. Suppose that Ui and Vi fly
away from one another. An experimental setup shall sep-
arate Ui and Vi spatially so that they cannot interact any
more by means of any known physical principle. Ui (Vi)
shall impinge on an apparatus A (B). A and B are of
the same kind. At a time t1 sufficiently larger than t0 a
property type as spin component or polarization axis, e.g.,
shall be measured simultaneously on both Ui and Vi. Let
us choose this property type E to be dichotomic in such
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a way that both the property (≡ numerical value of the
property type) E(Ui) and E(Vi) shall be equal to ±1 at
certain experimental parameters a and b, resp., which are
assumed to determine the actual internal structure of the
two coupled apparatuses A and B. a and b are, e.g., the
unit vectors defined by either the directions of the inho-
mogeneous magnetic field in two Stern-Gerlach devices or
the axes of two polarizers. The outcome of one single run
shall then be given by

Oi(a, b) = E(a;Ui)E(b;Vi). (3)

Suppose further that a sufficient number of single runs has
been done. The final result O(a, b) is the mean of all single
outcomes.

We associate the ensemble of produced or emitted en-
tity pairs (Ui, Vi) with a statistical operator ρ on a four-
dimensional Hilbert space H which is the direct product
of two orthogonal Hilbert spaces HU and HV . HU (HV ) is
connected to the physical space wherein E is measured on
Ui (Vi) using A (B). Let {|α1〉, |α2〉} be an orthonormal
basis of HU and {|β1〉, |β2〉} an orthonormal basis of HV .

The apparatus to measure E on Ui (Vi) shall be rep-
resented by the self-adjoint operator A (B) acting on
HU (HV ). A and B are determined by the experimen-
tal parameters a and b, resp., which are mentioned above.
The combination of the two apparatuses to perform simul-
taneous measurements of E on Ui and Vi yielding O(a,b)
has to be represented by the direct product of A and B
according to

P(a, b) = A⊗ 1V × 1U ⊗ B = A⊗ B. (4)

What shall be measured? In this place we will not refer to
a special property type. The only requirements are that

• the single measurements can yield yes-no-decisions,
i.e., the eigenvalues of A and B must be equal to ±1,
and that
• these decisions depend on rotation.

A is then given in its most simple form by

A =
(

1 0
0 −1

)
. (5)

Apparatus B differs from A insofar as b 6= a. Let a be a
principal axis in the laboratory coordinate system. Then B
emerges from A by a rotation around the angle χ between
the two vectors a and b

⇒ B =
(

cosχ sinχ
sinχ − cosχ

)
· (6)

B must not be diagonal with respect to the basis
{|β1〉, |β2〉}. Nevertheless the eigenvalues of B are equal
to ±1.

In complete analogy we define two further operators,
A′ and B′, where A′ represents apparatus A rotated with
respect to its first position (determined by a) by an angle
φ. B′ stands for B rotated with respect to a by an angle
ψ. Note that A and A′ as well as B and B′ are in general

non-commuting operators. The commutators [A, A′] and
[B, B′] attain their maximum if φ = π/2 and ψ = χ+ π/2
(χ may be chosen freely).

With the aid of these four operators we can simu-
late four different experimental arrangements. The cor-
responding operators of the joint measurements (the co-
incidence operators) are P(a, b), P(a, b′), P(a′, b), and
P(a′, b′). Each of these experiments, if actually performed,
leads to a final result O from which the second-order cor-
relation function ∆ can be calculated:

∆ = |O(a, b) −O(a, b′)|+ |O(a′, b) +O(a′, b′)|. (7)

On the other hand we may determine ∆ also by means of
TQM since there the final outcome of a measurement on
an ensemble of entities is given by

O(a, b) = Tr(P(a, b)ρ). (8)

In this way ∆ becomes dependent on the choice of the
statistical operator.

It has been shown in reference [4] that the most general
non-separable statistical operator for the gedankenexper-
iment considered is

ρn−s =
2∑

k,l,m,n=1

cklmnUkl ⊗ Vmn (9)

with cklmn = c∗lknm, Trρn−s = 1,

Ukl = |αk〉〈αl|, (10)

and Vmn defined analogously. Its separable counterpart ρs

is represented by the direct product

ρs = ρ(U)⊗ ρ(V ) (11)

where

ρ(U) =
2∑

k,l=1

uklUkl (12)

and ρ(V ) defined analogously. We further have to demand
Trρ(U) = Trρ(V ) = 1 so that also Trρs = 1. Based
on this preliminary work we are now able to determine
∆ in dependence on ρ. Details of the calculation can be
found in reference [4]. In the frequently discussed Bohm-
Aharonov singlet case, and if the parameters are chosen
so that the operators are maximally non-commuting, we
obtain ∆n−s ≤ 2

√
2 and ∆s ≤

√
2.

Definition 2. Two sub-ensembles {Ui} and {Vi} are
said to be EPR correlated iff, for a set of four experi-
ments with maximally non-commuting operators,∆exp

can be made equal to max(∆n−s).

As has been mentioned in the introduction, a lot of cor-
responding experiments have been performed using corre-
lated photon pairs. All ∆exp which have been evaluated so
far are very close to 2

√
2 ≈ 2.828 so that we are compelled

to conclude that the two photon sub-ensembles employed
are EPR correlated. However, what is about larger objects
as, e.g., molecules?
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3 Non-separability and EPR correlations
in the molecular domain

3.1 Summary of previous work [15,16]

Molecules are entities structured in an essentially classi-
cal way (this is the deeper reason why molecules may be
denoted as objects). “Molecular structure” (≡ SM) can be
understood as the notion for an arrangement of atomic nu-
clei in 3-dimensional Euclidic space which is of a certain
temporal stability sufficient to obtain data about it. In the
framework of TQM, however, molecular structure is not
an observable property type. There is no self-adjoint (and
sufficiently time-independent) structure operator SM, the
spectrum of which would contain the different possible
molecular structures as eigenvalues. In consequence, SM

had to be introduced to TQM by the so-called Born-
Oppenheimer construction [18,19] which makes possible
the existence of structure in terms of minima on potential
energy surfaces. Its first step, which consists of a series of
transformations and neglections, effects the reduction of
the full molecular Hamiltonian Hfull including all kinds
of motions and interactions to an internal Hamiltonian
Hint depending on a set of extremely complicated coordi-
nates. In the second step the solution of the correspond-
ing Schrödinger equation is attempted by means of per-
turbation theory which already presupposes the notion of
molecular structure, since otherwise no perturbation could
be defined. Furthermore it is important to note that the
perturbation expansion

Ψ int = Ψ (0) + κΨ (1) + κ2Ψ (2) + κ3Ψ (3) + · · · (13)

with respect to the parameter κ (which depends on the
ratio of the electron mass to a mean nuclear mass) must
be truncated after the κ2 term. If not, structure in terms
of potential energy surfaces gets lost again due to the non-
adiabatic coupling of electronic and nuclear motion con-
tained in Ψ (3... ). The exact eigenvalue Eint is of course
independent of any nuclear coordinates.

From the foregoing it should be clear that molecules
attain a zwitterposition in the overlap area of the world
of quanta and the world of classical physics. So it is
even more challenging to investigate the possibility of
non-separability and EPR correlations in the molecular
domain.

3.2 Proposal of an EPR-type experiment
with molecules

Suppose that a non-chiral molecule M2 consisting of two
identical sub-units M is excited by a laser pulse so that it
dissociates at a time t0 according to M2 → 2M. Suppose
further that the emerging fragments are chiral but of op-
posite handedness. Due to the linear momentum induced
by the bond breaking R–M and L–M fly away from one an-
other. An experimental setup shall separate R–M and L–M
spatially so that they cannot interact any longer by means

of any known physical principle. Now let R–M (L–M) in-
teract at a time t1 and in a region of space A (B) with a
photon I (II) of already known linear polarization (which
shall be equal for I and II). This interaction will change the
polarization of each photon. Finally photon I (II) will im-
pinge on an apparatus DA (DB) suited to detect a change
in the orientation of the polarization vector. The readings
of DA and DB are then combined to yield Oi(a, b), where
the vectors a and b give the orientation of the respective
detector in relation to the original polarization plane. By
N -fold repetition we obtain the final result O(a, b).

What will be the effect of the interaction? The polar-
ization axis of photon I will be rotated from(

1
0

)
(14)

in the Hilbert space HI by a M-dependent angle θ to(
cos θ
sin θ

)
· (15)

Analogously the axis of photon II will be rotated starting
from the same vector (now being an element of HII) by
the angle θ′ = −θ to (

cos θ
− sin θ

)
· (16)

This is due to the fact that, if the fragment interacting
with I is right(left)-handed, then the fragment interacting
with II must possess the opposite handedness. Recall the
frequently discussed Bohm-Aharonov singlet state.

The salient point of the whole argument is as fol-
lows: let {|α1〉, |α2〉} be an orthonormal basis of HI and
{|β1〉, |β2〉} an orthonormal basis of HII. Then the original
statistical operator of the ensemble of photon pairs is of
simple product form (see expression (14)):

ρbefore = |α1〉〈α1| ⊗ |β1〉〈β1|. (17)

Comparing this experiment with the example of coin
halves discussed in Section 2.1 it becomes evident that
the statistical operator of the ensemble of fragments must
be non-separable. It is formally equivalent to ρc given by
equation (2). So we may conclude that the operator T de-
scribing the interaction between photons and fragments,
i.e., the operator taking care of the proper change of
the polarization planes (expression (14)→ (15) and (16),
resp.), is given by

T = 1/2(TI(θ) ⊗ TII(−θ) + TI(−θ)⊗ TII(θ)). (18)

In consequence the ensemble of photon pairs after the in-
teraction is represented by

ρafter =TρbeforeT

=1/2{(cosθ|α1〉+ sin θ|α2〉)(cos θ〈α1|+ sin θ〈α2|)
⊗ (cos θ|β1〉 − sin θ|β2〉)(cos θ〈β1| − sin θ〈β2|)
+ (cos θ|α1〉 − sin θ|α2〉)(cos θ〈α1| − sin θ〈α2|)
⊗ (cos θ|β1〉+ sin θ|β2〉)(cos θ〈β1|+ sin θ〈β2|)}.

(19)
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ρafter is non-separable, i.e., the non-separability of the
fragment sub-ensembles has been transferred to the pho-
ton sub-ensembles. (Note that, for further considerations,
the molecular components must not be taken into account
since the fragments act as preparation devices only. Their
future fate is irrelevant.) Equation (19) can be simplified
so that we finally arrive at

ρn−s ≡ ρafter

= (cos2 θU11 + sin2 θU22)⊗ (cos2 θV11 + sin2 θV22)

− cos2 θ sin2 θ(U12 + U21)⊗ (V12 + V21) (20)

where we have made use of the already introduced opera-
tors Ukl and Vmn.

ρn−s has a separable counterpart ρs which as well (at
least in principle) is a possible candidate to represent
the ensemble of photon pairs after the interaction has
taken place. We obtain it from ρn−s if all cross terms in
equation (20) are omitted. It is represented by the direct
product

ρs = ρI ⊗ ρII (21)

where

ρI = cos2 θU11 + sin2 θU22 (22)

and ρII defined analogously. Note that, if θ = 0, ρs =
ρn−s = ρbefore.

In this way any correlation of the fragments R–M and
L–M will be transferred automatically to the photon pair
so that a subsequent analysis of the photons will give in-
formation about the kind of correlation existing between
R–M and L–M.

Let us explain this crucial point from another point
of view: the ensemble of fragment pairs may be repre-
sented by

ρ = 1/2(URR ⊗ VLL + ULL ⊗ VRR) (23)

with URR = |R〉〈R|, VLL = |L〉〈L|, and the other opera-
tors defined analogously. It is a widespread belief that a
superposition of L and R is not possible. But nevertheless
let us assume for the moment that it is. What would hap-
pen? The superposition would yield additional operators
which are not present in the above formula. Instead of ρ,
and in the most general case, we would have to make the
ansatz

ρ′ = 1/4(URR + URL + ULR + ULL)
⊗ (VRR + VRL + VLR + VLL), (24)

and the new interaction operator T′ would be given by

T′ = 1/4(TI(θ)⊗ TII(θ) + TI(θ)⊗ TII(−θ)
+ TI(−θ)⊗ TII(θ) + TI(−θ)⊗ TII(−θ)) (25)

(compare to Eq. (18)). (Note that URL and analogous
(cross-term) operators do not contribute to the change

of the polarization. URL + ULR = URL + U†RL = 2W is a
self-adjoint operator, but W2 6= W.)

T and T′ describe what will happen to an ensemble of
photon pairs. This ensemble is represented by a separable
statistical operator (ρbefore). Applying T to ρbefore results
in a non-separable operator, i.e., after the interaction the
two photon sub-ensembles are linked so that they cannot
be separated from one another any more. However, the
application of T′ to ρbefore leads to the separable operator

ρ′after = (cos2 θU11 + sin2 θU22)

⊗ (cos2 θV11 + sin2 θV22) = ρs, (26)

because the additional terms in equation (25) cancel ex-
actly all non-diagonal terms of ρafter! Put it into plain
words: the “existence” of said superpositions does not
touch on the separability of the ensemble of photon pairs.
But if said superpositions are not present, then the photon
pair sub-ensembles become interwoven.

The proposal presupposes that the photon pairs are
not prepared by an EPR-type setup. If they were already
EPR correlated before interacting with the fragments,
the detection of an EPR correlation after the interaction
would of course prove nothing. The question whether al-
ready a single fragment can evoke a rotation of the polar-
ization plane will be addressed in Section 3.3.

In complete analogy to what has been described in
Section 2.2 the experiment has to be performed with four
different orientations of DA and DB. The corresponding
operators of the joint measurements are P(a, b), P(a, b′),
P(a′, b), and P(a′, b′) which already have been defined.
With ρn−s we obtain after a lengthy but straight-forward
calculation

On−s(a, b) = cosχ(cos2 θ − sin2 θ)2,

On−s(a, b′) = cosψ(cos2 θ − sin2 θ)2,

On−s(a′, b) = cosφ cosχ(cos2 θ − sin2 θ)2

− 4 sinφ sinχ cos2 θ sin2 θ,

On−s(a′, b′) = cosφ cosψ(cos2 θ − sin2 θ)2

− 4 sinφ sinψ cos2 θ sin2 θ. (27)

Inserting these equations into equation (7) yields

∆n−s = |(cosχ− cosψ)(cos2 θ − sin2 θ)2|
+ | cosφ(cosχ+ cosψ)(cos2 θ − sin2 θ)2

− 4 sinφ(sinχ+ sinψ) cos2 θ sin2 θ|. (28)

By numerical evaluation of equation (28) it can be shown
that max(∆n−s) = 2. This value is reached for θ = 0◦,
45◦, or 90◦, and properly chosen (φ, χ, ψ). If, for each θ
given, the triple of the other angles is adjusted to max-
imize ∆n−s, we obtain max(∆n−s) as a function of θ.
For θ varying from 0◦ to 90◦ the range of max(∆n−s)(θ)
is the interval [

√
2, 2] where the lower bound is attained if

θ = 22.5◦ and 67.5◦, resp.
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If the angles φ and ψ are chosen to maximize the com-
mutators, equation (28) reduces to

∆n−s(n−c) = |(cosχ+ sinχ)(cos2 θ − sin2 θ)2|
+ |4(cosχ+ sinχ) cos2 θ sin2 θ|. (29)

Both θ-dependent terms are positive so that this formula
may be rewritten according to

∆n−s(n−c) =

| cosχ+ sinχ|{(cos2 θ − sin2 θ)2 + 4 cos2 θ sin2 θ}. (30)

It is easy to see that the expression in braces is equal to 1
for all θ. So we finally obtain

∆n−s(n−c) = | cosχ+ sinχ|, (31)

which is quite remarkable because now the correla-
tion function is independent of θ. Equation (31) implies
max(∆n−s(n−c)) =

√
2.

We may, on the other hand, employ the separable sta-
tistical operator ρs given by equations (21, 22) instead of
ρn−s. Proceeding in the same way as before, ∆s turns out
to be

∆s = |(cosχ− cosψ)(cos2 θ − sin2 θ)2|
+ | cosφ(cosχ+ cosψ)(cos2 θ − sin2 θ)2|. (32)

Also max(∆s) = 2, but the corresponding function
max(∆s(θ)) differs significantly from its ∆n−s analogue:
the max(∆s(θ)) values decrease monotonically from 2 at
θ = 0◦ to 0 at θ = 45◦ and then increase again to reach
2 at θ = 90◦. For θ ∈ [5.0◦, 85.0◦] ∆n−s −∆s > 0.04 (see
the discussion in Sect. 3.3), and the difference attains its
maximum (=

√
2) at θ = 45◦.

Choosing again φ and ψ so that [A, A′] and [B, B′] are
maximized we obtain

∆s(n−c) = |(cosχ+ sinχ)(cos2 θ − sin2 θ)2|. (33)

Obviously also max(∆s(n−c)) =
√

2.
What are the consequences regarding the evaluation of

the experiment? A comparison of the maxima of the two
correlation functions is irrelevant. Instead it is important
to realize that for most θ a set of angles (φ, χ, ψ) can be
found so that the difference between the two second-order
correlation functions becomes large enough to allow for an
experimental decision.

It should be mentioned that, in the case of commuting
operators (i.e., if φ = π and ψ = χ+π), ρn−s and ρs yield
identical results:

∆n−s(c) = ∆s(c) = 2| cosχ(cos2 θ − sin2 θ)2|. (34)

3.3 Discussion

The proposal outlined in the last section raises a couple
of questions.

•Why chirality at all? It is well-known that EPR cor-
relations are subject to decoherence [20]. Based on the
Bohm-Aharonov version of the EPR gedankenexperiment
[21] Ghosh et al. have investigated the case of two EPR
correlated spin-1/2 particles coupled to an environment
consisting of both a bath of harmonic oscillators (which al-
lows for a Caldeira-Leggett type of dissipative interaction)
and a fluctuating magnetic field [22]. They could show
that decoherence takes place already within a time frame
corresponding to the characteristic time scale of the parti-
cles so that the chance to observe non-separable behavior
is very small. On the contrary, the polarization correla-
tion of photons is scarcely influenced by an environment
model of the Ghosh-type. A lot of the property types of
molecules, however, react very sensitively to external dis-
turbations so that corresponding EPR correlations would
rapidly disappear. Fortunately, handedness is a remark-
able exception which is best demonstrated by the enor-
mous enantiomeric stability of naturally occurring com-
pounds as L-amino acids and D-sugars. If, e.g., the amino
acids would not remain enantiomerically stable during a
tremendous amount of different chemical processes and
physical influences, evolution could not have proceeded as
it did.

One could, however, argue that chirality is not a suited
property type to detect non-separable behavior, because
it is not possible to prepare a coherent superposition of
“left” and “right”. This statement should not be consid-
ered an irrefutable dogma [32]. But besides this we have
shown in the preceding section that just the non-presence
of operators representing L±R is responsible for the non-
separability of the photon sub-ensembles after the inter-
action. So we arrive at a fascinating conclusion: superpo-
sitions even may prevent EPR correlations.

But with respect to the proposed experiment a tech-
nical problem could arise: it is well-known that, if dur-
ing a chemical reaction a radical intermediate is formed,
the racemic mixture of the two possible products is ob-
tained if the reactive center of the intermediate may
adopt a planar configuration. Therefore, it is clear that
only source molecules which form sufficiently stable non-
planar radicals may be used in the proposed experiment.
The substituted disilane ((CH3)SiClH)2 could be a pos-
sible candidate and shall serve as an example. Being it-
self achiral, the two corresponding fragments (CH3)SiClH
behave as mutual mirror-images. The ground state of the
methyl chlorosilane radical (CH3)SiClH has a dihedral an-
gel C–Si–Cl–H of 120.79◦. If the radical is forced into
a planar arrangement around the Si atom, the energy
rises by 72.2 kcal/mole (more information on the calcu-
lations is given in the Appendix). The disilane source
molecule prefers a trans conformation which is energet-
ically lower than the cis isomer by 2.4 kcal/mole. The
dissociation along the Si–Si bond requires an energy in-
put of 78.5 kcal/mole which, however, will be apportioned
equitably to the fragments so that the energy excess will
hardly suffice to destroy the correlation by racemization.
• The handedness of a given molecule is an abso-

lute property. Since the achiral source molecules M2 are
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arbitrarily oriented in space before dissociation takes
place, it is to be expected that equal amounts of R–M
and L–M will reach the volumina A and B so that we
would obtain, after a certain time interval, an essentially
racemic mixture preventing any possibility to observe an
effect on the photon polarization. Therefore, the fragment
production rate must be attenuated to a level low enough
to allow for the identification of two entities as belonging
together in pairs. This, however, rises a question of fun-
damental importance: does a single molecule (fragment)
possess a rotatory power?

In dealing with macroscopic amounts of substance op-
tical rotatory power is normally observed as a bulk effect.
In the case that ω of the incident (monochromatic) light is
close to one of the transition frequencies of the molecule,
the rotation angle θ is given by

θ ≈ constNlω2/(ω2
k0 − ω2)Rk0 (35)

with N times l being the number of molecules contained
in the optical channel of length l (optical path length in
dm) and unit cross-section. Rk0 is the rotation strength
of the respective transition k ← 0,

Rk0 = Im(µ0kmk0) (36)

and determined by the eigenfunctions of the rovibronic
molecular Hamiltonian. With C being the concentration
in mole/liter we obtain

θ ≈ const′NAlCω2/(ω2
k0 − ω2)Rk0. (37)

This equation seems to suggest that, for a given molecule,
θ is proportional to C. In the case of one individual
molecule present in the probe volume its concentration
will be roughly comparable to 1/NA so that by sure no
rotation could be observed and no change of the photon
polarization would occur. But equation (37) does not make
sense if we deal with single molecules! The essential step
in the derivation of this so-called Rosenfeld equation is
the determination of the refractive index difference ∆n of
a circularly birefringent medium. ∆n, however, is a pure
bulk property. A single molecule does not have a refractive
index. Similarly, a macroscopic body has a temperature,
but the molecules it consists of do not. In addition it must
be emphasized that the corresponding experiments make
use of light, not of single photons. The samples are ir-
radiated with light of considerable intensity. From this we
conclude that the Rosenfeld equation should be applied to
macroscopic systems only. Our question, however, remains
open.

A vast amount of experiments have been performed
with single ions in a Paul cage. They clearly show that
a single entity of molecular dimensions exerts a measur-
able influence on radiation. Moreover, a new kind of EPR-
type experiments with massive particles has been pro-
posed already a decade ago [27]. The crucial point is that
two initially independent atoms, both prepared in circu-
lar Rydberg states, are forced into an EPR correlation
by means of a one by one resonant coupling to a high

Q microwave superconducting cavity. This coupling pro-
cess leads to the exchange of a single photon between the
atoms. The direct result of said indirect interaction is cor-
relation, i.e., a single photon exerts a measurable influence
on an entity of molecular dimensions. First experiments
[28] demonstrate the feasibility of this procedure. Finally
it should be emphasized that molecules have a structure
already by definition. Therefore, certain molecules also
have a handedness, since handedness is a possible con-
sequence of structure. Recall the nano-scale realization of
Pasteur’s experiment [33]: the authors succeeded not only
to differentiate but even to separate enantiomeric aggre-
gates of 10 (!) single molecules of 1-nitronaphthalene by
use of scanning-tunneling-microscopy.

Taking all these facts together it is quite plausible to
assume that single molecules indeed possess a rotatory
power. But what would be the consequence if not? In this
case (θ = 0) both ∆n−s and ∆s reduce to

∆not = | cosχ− cosψ|+ | cosφ(cosχ+ cosψ)|. (38)

Now, if a triple of angles (φ, χ, ψ) could be found so that
∆not ≈ 0 but ∆n−s and/or ∆s > 0 (for any θ > 0), then
the proposed experiment would yield a definitive answer
to our question as well, since then any ∆exp > 0 would
automatically prove that the fragments under considera-
tion possess a rotatory power. Let, for example, φ = 90◦,
χ = 89.5◦, and ψ = 90.5◦. In this case∆not = 0.017 453. It
is seen immediately that (cos2 θ − sin2 θ)2 is always lower
than or equal to 1. Therefore ∆s will never exceed the
limit of 0.017 453 irrespective of which value θ attains. On
the other hand we obtain

∆n−s(90◦, 89.5◦, 90.5◦) = |1.7453× 10−2(cos2 θ − sin2 θ)2|
+ |7.9997 cos2 θ sin2 θ| (39)

so that any effect larger than about 0.018 would prove two
statements at a time, namely (i) that the fragments under
consideration possess a rotatory power, and (ii) that the
corresponding sub-ensembles behave non-separable.
• The benchmark experiment of Zeilinger et al. [14]

has been performed using silicon avalanche photodiodes
with dark count rates (noise) of a few 100 per second. By
comparison to the 10.000–15.000 signal counts per second
one obtains a signal-to-noise ratio of about 102. The final
analyzer had a resolution of 75 ps and an accuracy of
0.5 ns. The visibility amounted to 97%. So Zeilinger and
coworkers could determine ∆ with an accuracy of ±0.02.
Based on this value a difference ∆n−s − ∆s ≥ 0.04 in
the proposed experiment is necessary to demonstrate that
the fragments are EPR correlated indeed. Using the above
equation we can estimate that ∆n−s must be greater than
or at least equal to about 0.058. Therefore the fragments
must provide for a rotation angle θ > 4.1◦.

There are only a few other proposals to use molecules
in EPR experiments. Lo and Shimony [25] suggested to ex-
amine the electronic spin correlation of pairs of Na atoms
produced by dissociative excitation of Na2 (1Σ+

g ) using
the induced Raman effect. Years later Fry, Walther, and
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Li [26] described a related experiment: by a similar pro-
cedure 199Hg atoms are generated from 199Hg2 dimers,
and the nuclear spin correlation of the atoms is measured.
Both proposals may be considered as heavy-body analogue
of the original Bohm-Aharonov idea. Therefore they differ
basically from the present work. To the knowledge of the
author none of them has been realized until now.

4 Summary

Imagine a pair (Ui, Vi) of entities which have been gener-
ated jointly from a common source, i.e., from a common
ancestor. Imagine further that they will be separated by
an experimental device so that they cannot interact any
more by means of any known physical principle. Then the
ensemble {Ui, Vi} of all pairs may be represented by either
a separable (ρs) or a non-separable (ρn−s) statistical oper-
ator. ρs stands for the independence of the sub-ensembles
{Ui} and {Vi} whereas ρn−s admits correlations (EPR cor-
relations) due to the presence of so-called interference or
cross terms. A property type E shall be measured simul-
taneously (i.e., within a time frame ∆t < ∆x/c with ∆x
being the distance of the entities) on both Ui and Vi. The
numerical values E(Ui) and E(Vi) shall depend on the set-
ting of two parameters a and b which determine the actual
internal structure of the coupled measuring apparatuses A
and B, resp. Now choose two additional settings, a′ and
b′, so that a series of four different joint measurements
each consisting of a number of single runs sufficient to
validate the law of large numbers can be performed. The
four results yield the second-order correlation function ∆
(see Eq. (8)). It has been shown in Section 2.2 that the
value of ∆ calculated by means of TQM depends strongly
on the choice of the statistical operator. In this way it can
be decided by experiment which of the two operators cor-
rectly represents the behavior of the ensemble. Thereby
also the question is answered whether the sub-ensembles
behave separable or not.

If it would be possible to design an analogous experi-
ment with molecules, it could be decided whether EPR
correlations appear in the molecular domain too. This
question is of enormous relevance for our understanding
of the notion of molecule, since a positive answer would
mean that separated molecules may not behave separately.
None would have an “existence” of its own despite the fact
that molecules are essentially classical entities.

A detailed elaboration of the following idea has been
presented: let an achiral precursor molecule M2 dissociate
so that two chiral fragments of different handedness are
obtained. After separation R–M (L–M) interacts in a re-
gion of space A (B) with a photon I (II) in an already
known linear polarization state. The enantiomeric corre-
lation of the fragments is conferred to the photons, and
the corresponding changes of the polarization state are
detected for different polarizer settings to finally yield ∆.
Comparing the effect of ρs and ρn−s, resp., on the second-
order correlation function, the expected values of ∆ may
differ considerably. If said settings are chosen properly,
any measured value of ∆ larger than or equal to 0.058

proves that both

• EPR correlations “exist” in the molecular domain too,
and
• single molecular entities possess a rotatory power.

Appendix

The calculations on 1,2-dichloro-1,2-dimethyl-disilane
(≡M2) and on the corresponding chloromethylsilyl rad-
ical (≡M) have been performed using the software pack-
age Gaussian 98 [29]. The equilibrium geometries have
been determined on a DFT level employing Becke’s 1988
exchange [30] and Perdew’s 1986 correlation functional
[31] together with the 6–31G?? standard basis set. The
two possible M2 isomers (trans–Cl–Cl in Ci symmetry
and cis–Cl–Cl in Cs) have been optimized independently.
Based on this structures refined energy values have been
obtained by means of single point coupled cluster calcula-
tions with perturbatively included triple excitations from
the Hartree-Fock determinant (≡CCSD–T). Instead of 6–
31G?? the cc–pVDZ basis set has been used for Cl, H,
and C, whereas the larger cc–pVTZ basis set has been
employed for the silicon atoms.
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